Image Clustering with Metric, Local Linear Structure, and Affine Symmetry
نویسندگان
چکیده
This paper addresses the problem of clustering images of objects seen from different viewpoints. That is, given an unlabelled set of images of n objects, we seek an unsupervised algorithm that can group the images into n disjoint subsets such that each subset only contains images of a single object. We formulate this clustering problem under a very broad geometric framework. The theme is the interplay between the geometry of appearance manifolds and the symmetry of the 2D affine group. Specifically, we identify three important notions for image clustering: the L distance metric of the image space, the local linear structure of the appearance manifolds, and the action of the 2D affine group in the image space. Based on these notions, we propose a new image clustering algorithm. In a broad outline, the algorithm uses the metric to determine a neighborhood structure in the image space for each input image. Using local linear structure, comparisons (affinities) between images are computed only among the neighbors. These local comparisons are agglomerated into an affinity matrix, and a spectral clustering algorithm is used to yield the final clustering result. The technical part of the algorithm is to make all of these compatible with the action of the 2D affine group. Using human face images and images from the COIL database, we demonstrate experimentally that our algorithm is effective in clustering images (according to ojbect identity) where there is a large range of pose variation.
منابع مشابه
Local Symmetry of Unit Tangent Sphere Bundle With g- Natural Almost Contact B-Metric Structure
We consider the unit tangent sphere bundle of Riemannian manifold ( M, g ) with g-natural metric G̃ and we equip it to an almost contact B-metric structure. Considering this structure, we show that there is a direct correlation between the Riemannian curvature tensor of ( M, g ) and local symmetry property of G̃. More precisely, we prove that the flatness of metric g is necessary and sufficien...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملCubic Differentials in the Differential Geometry of Surfaces
We discuss the local differential geometry of convex affine spheres in R and of minimal Lagrangian surfaces in Hermitian symmetric spaces. In each case, there is a natural metric and cubic differential holomorphic with respect to the induced conformal structure: these data come from the Blaschke metric and Pick form for the affine spheres and from the induced metric and second fundamental form ...
متن کاملPiecewise affine registration of biological images for volume reconstruction
This manuscript tackles the reconstruction of 3-D volumes via mono-modal registration of series of 2-D biological images (histological sections, autoradiographs, cryosections, etc.). The process of acquiring these images typically induces composite transformations that we model as a number of rigid or affine local transformations embedded in an elastic one. We propose a registration approach cl...
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کامل